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The turbulent flow resulting from a top-hat jet exhausting into a large room was 
investigated. The Reynolds number based on exit conditions was approximately lo5. 
Velocity moments to third order were obtained using flying and stationary hot-wire 
and burst-mode laser-Doppler anemometry (LDA) techniques. The entire room was 
fully seeded for the LDA measurements. The measurements are shown to satisfy the 
differential and integral momentum equations for a round jet in an infinite 
environment. 

The results differ substantially from those reported by some earlier investigators, 
both in the level and shape of the profiles. These differenccs are attributed to the 
smaller enclosures used in the earlier works and the recirculation within them. Also, the 
flying hot-wire and burst-mode LDA measurements made here differ from the 
stationary wire measurements, especially the higher moments and away from the flow 
centreline. These differences are attributed to the cross-flow and rectification errors on 
the latter at the high turbulence intensities present in this flow (30% minimum at 
centreline). The measurements are used, together with recent dissipation measurements, 
to compute the energy balance for the jet, and an attempt is made to estimate the 
pressure-velocity and pressure-strain rate correlations. 

1. Introduction 
The axisymmetric jet (shown schematically in figure 1)  represents a benchmark for 

research into the physics of turbulent fluid flow. Although experimental methods are 
complicated by the high local turbulence intensities of this flow, the theoretical study 
is simplified since the jet is both axisymmetric in the mean and a free shear flow to 
which boundary-layer approximations can be applied. The axisymmetric jet’s 
importance to the understanding of turbulence is evidenced by the volumes of 
publications involving experimental data, mathematical analysis, and computational 
modelling (e.g. the reviews by Monin & Yaglom 1971; Hinze 1975; Townsend 1976; 
Rodi 1975a; List 1979). 

Early experimental investigations of the jet include the work of Corrsin (1943), 
Corrsin & Uberoi (1950, 1951), Reichardt (1941), Hinze & van der Hegge Zijnen 
(1949), and Corrsin & Kistler (1955). The failure of the turbulence intensities to attain 
self-preservation in these early works motivated the efforts of Wygnanski & Fielder 
(1969) using linearized hot-wires. Their work became the standard reference for the 
quantitative description for profiles of mean velocities, turbulence stresses and triple 
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FIGURE 1 .  Axisymmetric jet coordinates. 

correlation coefficients. Rodi (1975a) and List (1980) provide useful reviews of these 
studies. 

Occasionally researchers have utilized the far field of the jet to evaluate new 
experimental methods or to examine the role of large-scale structures, thereby 
expanding the database. For example, Rodi (1975b), investigating a new technique for 
analysing hot-wire signals, measured first and second moments at positions up to 75 
diameters from the jet exit. Lehrmann (1986) used different laser Doppler anemometer 
(LDA) seeding techniques to examine the entrainment process and in the course of the 
investigation obtained profiles of mean velocity and turbulence intensities. Neither of 
these experiments obtained profiles which agreed particularly well with the earlier 
measurements which used more conventional techniques. 

The jet has also been heavily studied by turbulent modellers. Tollmien’s (1926) study 
based on Prandtl’s mixing-length theory was the first of many theoretical treatments 
of the circular jet. In  fact, the difficulties of predicting this flow with model constants 
determined from other flows has proved to be one of the more challenging problems 
faced by turbulence modellers over the past two decades. These efforts have been 
reviewed in detail by Hinze (1975), Rodi (1975a), and more recently by Taulbee (1989). 

Questions concerning the validity of the jet data as determined by the equations of 
motion were first raised at the Turbulence Research Laboratory of SUNY/Buffalo 
during the late 1970s. Baker (1980), while investigating the evolution of a hot 
axisymmetric turbulent jet into a turbulent plume using numerical methods, discovered 
that the far-field data of Wygnanski & Fiedler (1969) failed to satisfy the constraint of 
the integrated axial momentum equation. Seif (198 1) in a subsequent numerical study, 
using both k - s  and Reynolds stress models, also found significant problems with that 
data. These difficulties prompted the experimental study by Capp (1983) using LDA 
techniques to investigate this constraint in order to clarify the source of the 
discrepancy. Those measurements established that the error was facility-related and 
that there can be significant differences between a jet in a confined or semi-confined 
enclosure and one in an infinite environment because of the recirculating flow entrained 
by the jet. A11 of these results have been discussed in detail by Capp & George (1982), 
George et al. (1982, 1988), and George (1990), as well as in the reference cited above. 

There have also been several recent re-examinations of jet theory. Schneider (1985) 
analysed the entire flow field (including the entrainment region) with a multiple scaling 
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approach using inner and outer expansions. He was able to show that the integrated 
momentum flux at each cross-section of the axisymmetric jet remained constant to first 
order and equal to the rate at which momentum was added at the source. This was 
quite unlike the plane jet where the boundary conditions in the vicinity of the source 
significantly modified the integrated momentum from its source value. In a 
complementary study, George et al. (1982) showed from scaling arguments that the 
integrated momentum equation was constant to second order at the source value. This 
constraint imposed by the integrated momentum equations will be discussed in detail 
later, and will be seen to form an important criterion for validating the experiment. 

The possibility of self-preserving solutions to the axisymmetric jet equations was 
recognized by Tollmien (1926) and others. All of the texts cited above review the 
principles of self-preservation as applied to this flow (see also Tennekes & Lumley 1972 
for a self-contained discussion). In brief, solutions to the averaged equations are sought 
which are of the form U = UA(x)f(q), -m = R,(x)g(r) ,  etc., where 7 = r / x  and the 
coordinate system is shown in figure 1. If it is assumed that the flow can be scaled by 
a single length and velocity scale then it can be shown that self-preservation is possible 
only if d8/dx is a constant, presumed universal. These assumptions can be justified 
from dimensional and physical arguments only if the source is presumed to be a point 
source of momentum only (cf. George 1989, Monin & Yaglom 1971). It has been 
widely accepted that all jets should asymptotically approach the same self-preserving 
state, independent of the details of their origin (cf. Townsend 1976). 

Recently, George (1989) discovered a short-coming in the original similarity theory 
which implicity assumed that the sclf-preserving state was independent of the details of 
the initial conditions. The more general analysis showed that the self-preserving state 
attained could be in fact uniquely determined by the initial conditions. It also reviewed 
that any x-variation of the jet transverse lengthscale 8 for which RS/U,2/d8/dx = 

constant can result in a self-preserving jet, at least at the order of the mean momentum 
equation. Only by considering the consequences of self-preservation on the higher- 
order moments can the linear growth rate be recovered, but even then with coefficients 
determined by the details of the initial conditions (especially exit profile and Reynolds 
number). The new results make it clear that the laboratory jets can never approximate 
the point-source of momentum jets of the earlier analysis, and that each class of 
laboratory jet is in principle asymptotically unique (e.g. top-hat jets, fully-developed 
pipe flow jets, etc.), and retain forever a dependence on the source Reynolds number. 
The arguments leading to these conclusions and their implications for the higher 
moments are summarized in Appendix C. 

This paper reports the results of an experimental program to measure the velocity 
moments (to third order) of an axisymmetric jet. Both stationary and flying hot-wire 
(referred to as SHW and FHW respectively) and burst-mode LDA techniques were 
used for the same source and boundary conditions. The data obtained have been 
analysed together with the governing equations and boundary conditions believed to 
apply to the axisymmetric jet. It will be argued that since the flying hot-wire and burst- 
mode LDA results alone satisfy these equations, the stationary hot-wire results 
reported here (and many of the experiments performed earlier) are not representative 
of an axisymmetric jet. 
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FIGURE 2. Schematic of jet apparatus. 1. Vibration isolation; 2. slot and plate; 3. diffuser; 
4, honeycomb; 5. screen; 6. nozzle; 7. jet; 8. blower. (Dimensions in inches.) 

Quantity Symbol Value 
Exit diameter (inches) D 1 .o 
Velocity (m/s) uo 56.2 
volume flux (mz/s) m0 0.0287 
Momentum flux/unit mass (m4/s2) M" 
Reynolds number Re, 

1.61 
9.55 x 104 

TABLE 1. Exit parameters 

2. Experimental facility and the measurement hardware 
2.1. The jet 

The jet used in the experiments reported here was an existing facility modified to closely 
match the boundary conditions of Wygnanski & Fiedler. A schematic of the jet 
apparatus is shown in figure 2. Briefly, a paddle blower exhausted through a diffuser 
into a 12 in. diameter settling chamber which contained both honeycomb and screens. 
Two contractions were used to reach the jet exit diameter of 1 in. The first of these 
reduced the diameter to 3 in. and was of matched cubic design and the second was of 
fifth-order polynomial design. 

A hot-wire probe was used to measure the mean velocity and turbulence intensity 
across the jet exit. Measurements were made along vertical and horizontal lines passing 
through the centre of the jet exit at 33 locations spaced & in. apart. The average of the 
mean velocities for these points was 56.2 m/s with a standard deviation of 0.72 m/s. 
This value was accepted as the jet exit velocity U,. The turbulence intensity at the exit 
was nominally 0.58 %, the largest portion of which was at low frequency and related 
to the unsteadiness of the fan. Exit parameters for the jet are listed in table 1. The 
boundary layer at the jet lip was laminar with 6,, = 0.7 mm. Because there was a slight 
increase in velocity with radius (2%) owing to the contraction, to an excellent 
approximation the jet could be considered to have a top-hat profile, and the exit 
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* 82 * 
FIGURE 3. Schematic showing layout of jet facility. (Dimensions in feet.) 

volume flux, pm,, and momentum flux, pM,, could be determined using the jet exit 
velocity, U,, and exit diameter, D, i.e. 

pm, = ~ x U ,  D2, (2.1) 
and pM,  = ~xU,Z 0'. (2.2) 
Since the jet nozzle was machined with an accuracy of 0.001 in., the major error term 
in the calculation of the exit momentum is due to the variation in the exit velocity. 
Using 0.72m/s as the error estimator for the exit velocity, the uncertainty in the 
calculation of the rate of momentum addition at the source is approximately 2.6%. 
Note that an accurate description of the exit conditions is needed only for the 
normalization of the centreline velocity, U,, since all transverse profiles are non- 
dimensionalized with respect to it. 

2.2. The enclosure 

In order to provide uniform spatial seeding for the LDA measurements, the jet facility 
was surrounded by a large enclosure constructed of polythene sheet. The enclosure was 
designed to minimize the backflow momentum so that the jet retained 90% of its 
momentum to x / D  = 200 using the criterion proposed by Capp (1983). (This criterion 
is reviewed in Appendix B.) The enclosure (shown schematically in figure 3) was square 
in cross-section, having a width of 16 ft and a length of 82 ft. The jet was centred in 
the cross-section of the enclosure, the exit being 34 ft from the endwall. The traversing 
system was capable of moving 6 ft along the x-axis and 4 ft along both the y-  and 
z-axes. It was positioned to take measurements from 50 to 122 exit diameters 
downstream. 

2.3. The hot-wire anemometry 

The hot-wire measurements were taken using standard Dantec 5 pm wire probes 
(55P01, 55P51 and 55P53) and 55M10 CTA units. The anemometer voltages were 
digitized using a Phoenix Data 15 bit A/D converter capable of 150 kHz throughput 
rate with simultaneous sample and hold on all channels. Probe calibration and data 
acquisition were done using a DEC PDP 11/84 minicomputer with a DEC RA81 
500 Mbyte disk drive and a DEC TU81 high-speed tape drive. The hot wires were 
calibrated for velocity using the polynomial calibration law described by George et al. 



36 H .  J .  Hussein, S. P .  Cnpp and W. K. George 

Meun velocity (V,  W = 0 by assumption) 
Single wire 

Cross-wire 

Second central moments 

Cross- wire 

Third ceriiral moments 

Single wive 

Cross-w ire 



Velocity measurements in a turbulent jet 37 

(1989), and for angle using the velocity dependent k-factor technique of Beuther, 
Shabbir & George (1987). Thc average accuracy of this calibration method was 

0.1 Yo. The flow-field data was transported via magnetic tape to a VAX for further 
processing. 

In order to guarantee the statistical independence of each sample, the autocorrelation 
was measured directly and used to determine the integral scale at various locations 
across the flow. This was in turn used to set the sampling rate for the A/D at less than 
one sample every two integral scales so that each sample was effectively statistically 
independent (see George 1979). A total of 2000 independent samples at a rate of 13 Hz 
(total record length of 154s) was taken at each position. This corresponds to a 
sampling error for the mean of approximately 3 % at the outermost radial location and 
0.7% at the centreline. The sampling error in the second and fourth moments for all 
locations is estimated at 3 YO and 20 %, respectively. 

An important limitation on the stationary hot-wire (hereinafter denoted as SHW) 
measurements of this investigation arises because of the high local turbulence intensity 
which is about 30% at the jet centreline and increases to greater than 100% past the 
velocity half-width. The effects of high turbulence intensity on hot wires have been 
discussed by a number of authors including Tutu & Chevray (1975), and Beuther et al. 
(1987). The principal limitations are cross-flow, rectification and drop-out, all of which 
increase with the turbulence intensity. Beuther et al. (1987) suggest that these effects 
can be assumed to be unimportant only as long as the leading terms are negligible in 
an expansion about a state of zero turbulence level. The expansions for the mean 
quantities of interest in this investigation are summarized in table 2. Note that the 
leading error terms for cross-wires are larger than for single wires, and that error terms 
for moments above the first enter at only one order above the moment being measured. 
The significance of these observations will be seen later when comparing the stationary 
hot-wire (SHW) results with those of the flying hot-wire (FHW) and burst-mode laser- 
Doppler anemometer (LDA). 

2.4. The flying hot-wire apparatus (FHW) 

The flying-wire experiments were performed by whirling the probes about an axis 
perpendicular to the axis of the jet. To decrease the interference of the supporting arm, 
the probes were mounted approximately 0.1 m away from the tip of a 1 m long, low- 
drag symmetric NACA 0010 airfoil. A one horse-power motor was used in combination 
with a set of reduction gears and counter weights to obtain smooth rotation of the 
wing. The entire mechanism was mounted on a one-dimensional manual traversing 
system which was used to move the probes across the jet. A sketch of the apparatus is 
shown in figure 4. Measurements which used the whirling wire system were taken on 
a radial traverse at a distance of 70 diameters downstream from a one-inch diameter 
axisymmetric air jet. The purpose of the flying wire was to reduce the cross-flow, 
rectification and drop-out errors associated with the high local turbulence intensity. 
Accordingly, the rotation rate was chosen to be 66 r.p.m. so that the velocity of the 
wires was 7.60 m/s. This reduccd the effective turbulence intensity, u,,,J(U+ Up),  to 
less than 12% at all radial locations. 

The hot-wire signal was transmitted from the probes to the anemometers using low- 
noise slip-rings. The slip-rings were enclosed in a grounded aluminium housing in order 
to avoid stray electromagnetic noise. The coaxial cables connecting the slip-rings to the 
anemometers were also shielded. The noise due to the slip-rings was estimated to be of 
the order of 1 mV. Both the original velocity signal and its time derivative were recorded 
for each of the wires. 
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FIGURE 4. Flying hot-wire apparatus. 

The data were collected only when the probe was parallel to the axis of the jet. This 
was accomplished by using an encoder pulse that triggered the A/D converter to collect 
the data. The short charging time of the sample and hold of the A/D (nanoseconds) 
ensured that the measurement was effectively taken at a point. One data sample was 
collected for each revolution, and 4800 samples were taken at each radial position. 

Effects of the wing on the flow were carefully studied. The wing has a low coefficient 
of drag, C,, of 0.0045 and a Reynolds number of 1700 at 1 m/s. The large-scale 
characteristics of the flow in the vicinity of the measuring point were observed with 
smoke wires to ensure that there were minimal amounts of flow disturbances on the jet 
as the wires rotated through it. This observation was consistent with measurements 
from a stationary hot-wire made while the ring was rotating nearby. These were 
indistinguishable from those made without the wing, indicating that whatever 
disturbances resulted from the wing were convected away from the measuring location. 

2.5. The burst-mode laser Doppler anemometer (LDA)  
The LDA hardware consisted of a two-colour Argon ion model 165 laser system used 
in combination with Dantec's 55X modular optics and a folded bench. The optics were 
configured in a back-scatter mode using variable frequency shift. Processing hardware 
consisted of two modified 55L90a counters, the 55N10 frequency shift unit, and the 
57G20 buffer interface to transfer the digital output of the counters to the PDP 11/84. 
The buffer interface was also fitted with a 576149 coincidence filter board to ensure 
simultaneous realizations from both channels. 

The counter had been updated by Dantec to include a 10 bit burst time. In order to 
avoid problems arising from fringe count overflow at the jet's outer edges, the fringe 
count register was also specially modified by Dantec to a 10 bit register, and to reset 
when the register was full. (Note that the standard 55L90a counter contains only an 
8 bit fringe count register which simply recycles when overflow occurs, thereby 
introducing major errors in the residence time computation. This probably accounts 
for many of the problems reported using burst-mode LDA with residence time 
weighting.) The optics for the two-channel measurements were rotated by 45" so that 
both channels detected the same mean velocity. With a front lens of focal length 0.6 m 
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and a 17.8mm beam separation, the calibration constant for the optics was 
approximately 17 m/s per MHz. The bandwidth of the filters in the counter was 
2 MHz, therefore the frequency shift was chosen to place the mean detected frequency 
at 1 MHz. Thus, at a position 70 diameters downstream of the jet exit where the r.m.s. 
velocity at the centreline was 1.4 m/s, the hardware was capable of measurements over 
a range of 12 standard deviations about the mean velocity. Note that the frequency 
shift was sufficient to eliminate angle bias (Buchhave 1976; Buchhave, George & 
Lumley 1979), but not large enough to introduce significant quantization errors (Capp 
1983; George 1988). 

The data were processed using the residence time weighting technique discussed in 
detail by Ruchhave et al. (1979) and George (1988). In brief, all measured moments are 
weighted by the measured residence times, At7, of the individual scattering particles. 
Thus the mean is given by 

x 
C ( ~ p j >  Atj 

3 (2.3) 0 = 3=1 
1L 

C Atj 
3 = 1  

and the nth central moment by 

where upJ is the velocity of the j th particle, Atj is its residence time, and N is total 
number of particles measured. Both upi and Atj can be determined from the Doppler 
frequency and fringe count measurements provided on the I/O-2 channel of the 
modified 55L90a counter. Similar expressions were used for the mixed moments, e.g. 

c At? 
j=1 

The advantage of the residence time weighting technique is that it avoids most of the 
sources of bias present in alternative processing techniques, assuming, of course, that 
additional errors are not introduced by the kind of hardware deficiencies mentioned 
above (cf. George 1988). 

In addition to the two-channel LDA measurements, single-component LDA 
readings of the axial velocity profile were taken to verify that the coincidence filter 
board was not biasing the signal. The coincidence filter itself was set to accept data only 
when the data-ready pulses from both counters were within about 20 % of the average 
of the two residence times. This introduced a very stringent criterion for rejecting 
spurious data from either counter, and reduced the effective scattering volume. 

The sampling rate of the LDA system, unlike the hot wires, is not fixed, but 
fluctuates in time and is strongly correlated with the local flow field. To avoid the 
problem of bias, all laser data was processed using residence time weighting and all 
data records were taken for a fixed time (as opposed to the more common fixed number 
of particles). In order to achieve statistical convergence, data was sampled until both 
a record length of 500 seconds had passed and at least 4500 samples were taken. The 
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signal-to-noise ratio of the Doppler signal was good, as indicated by the strong 
correlation between the residence times of different channels (0.85 typically) and 
between residence time and velocity of the same channel (-0.65 typically). 

In spite of the large record sizes, there is still considerably more scatter in the LDA 
results (typically 5 YO) than in the hot-wire measurements. Capp (1983) and George 
(1988) have carefully considered all known sources of random counter errors and 
concluded that the largest by far is that associated with the fringe count register used 
to calculate the residence time. For these experiments the r.m.s. value of this error is 
estimated to be about 2 % .  This is substantially less than might be inferred from the 
0.85 correlation between different channels and indicates that there may be other 
contributors to this error than those included in the analysis. On the other hand, the 
random errors present in the measurements may simply be a reflection of the difficulty 
in maintaining a stable flow for the long periods of time required for the LDA 
measurements. Since the traverses moved randomly from one radial position to 
another, any shift in the flow would show up as a random error instead of as a trend. 
It should be noted, however, that no such drift was apparent in the hot-wire 
experiments. 

The flow was seeded using glycerin smoke (during the LDA measurements only). An 
estimation of the particle response time (4 ps) shows it to be smaller than the 
Kolmogorov microtime scale (1 ms) estimated at 70 diameters (see Capp 1983) so that 
the particle and fluid velocities are identical. Statistically uniform spatial seeding is 
needed for the computation of bias-free LDA counter measurements in order to 
uncouple the particle arrival statistics from the flow which transports them (see 
Buchhave et al. 1979; George 1988). This was accomplished by filling the room with 
smoke prior to the test and using the blower to distribute the particles. The source was 
then turned off during the test. Even though some seed was probably lost as the air 
passed through the wire mesh and honeycomb of the jet, at seventy diameters the 
entrained volume of fluid is an order of magnitude greater than the volume flux at the 
source so that the effect on the measurements was minimal. That there was little 
measurable difference in seeding concentration between the jet and its surrounding 
environment was confirmed by using the average residence time of the particles to infer 
the concentration (Capp 1983). Thus while the concentration of particles diminished 
slowly during the test, their distribution remained nearly spatially uniform. 

2.6. Experimental procedure 
First, the characteristics of the jet exit were measured using a single-wire probe. The 
next step consisted of the alignment of the traversing system with the jet’s central axis. 
The final contraction of the jet was machined from a 4 in. Plexiglas block into which 
holes were drilled parallel to the jet axis to provide targets for a laser beam to enable 
an initial rough alignment. The final traverser alignment and verification of flow 
symmetry was based on velocity contours from 30 to 100 diameters downstream of the 
jet exit measured using single stationary wire probes. Figure 5 shows a sample of such 
a plot. With the centreline established, the centreline velocity decay rate was measured 
and the virtual origin determined. It was desired to record profiles as close to the jet 
exit as possible in order to maximize the magnitude of the measured velocities and to 
minimize the effect of the LDA optics on the jet entrainment _ _ _  field. Data from the 
contour plots was analysed to confirm that the profiles (U,  uz, u3, u4) displayed self- 
similar behaviour at both 70 and 100 diameters downstream from the virtual origin. 
The detailed profiles presented later were taken at a position of 70 diameters 
downstream from the origin and spanned a range of -0.16 < 7 < 0.1 6. Axial velocity 
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FIGURE 5. Constant axial velocity contours of the jet flow field 

values for the single and cross-wire probes differed by no more than a few per cent 
across the profile. 

Limitations of the laser's traversing system permitted only thc axial and radial 
components of velocity to be measured in this experiment. However, data on the axial 
and azimuthal components taken during an earlier experiment by Capp (1983) are also 
presented to further detail the behaviour of the flow field. Thus, only the terms 
involving - cross-correlations between radial and azimuthal components of velocity (e.g. 
w') are absent in the FHW and LDA data presented in this paper. Note that the earlier 
experiment was conducted in a smaller, irregularly shaped enclosure of varying width. 
The width between 70 and 100 diameters was roughly 14 ft and had a height of only 
8 ft. Details of this smaller facility can be found in Capp (1983). Profiles of the axial 
velocity and its higher moments for both sets of LDA data were consistent with each 
other and with the FHW data. 

In the measurements presented below, the following form is fitted using the method 
of least squares to all measured profiles: 

(2.6) 
The function was taken to be either odd (e.g. m) or even (e.g. 2) and the appropriate 
coefficients set to zero. While the polynomial multiplying the exponential allows for an 
excellent fit over the range in which data were taken (?I < 0.2), care must be used in 
applying these fits beyond this range as unphysical sign changes can be encountered. 
For both the hot-wire and the LDA data of this experiment, the values of these 
coefficients and the value for the constant in the exponent, A ,  are listed in tables 4 and 
5 .  The final differential and integral momentum balances for the jet which are presented 
below are carried out using these fitted functions. Note that no fit is provided for the 
FHW data since they are in very close agreement with the LDA data. 

p(q)  = [C, + C, q + C, 71' + C,g3 + ... + C, )I"] exp( -A$) .  
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3. The experimental results 

For a self-preserving jet, the centreline velocity is given by 
3.1. The centreline uelocity variation and mean uelocit-y proJile 

uc = BMi/(.x-.x,), (3.1) 
where B is a constant and xo represents a virtual origin. (Note that both x,, and B may 
depend on the exit conditions, George 1989.) From (2.2), this can be written for a top- 
hat jet as 

where the constants are related by 
B, = i d B .  (3.3) 

The centreline velocity is plotted as a function of axial location in figures 6 and 7. 
For both graphs, the vertical scales are normalized and the exit velocity U ,  and the 
horizontal scales are normalized using the exit diameter D. Since the centreline velocity 
appears in the denominator of the ordinate, the l /x  decay rate is represented as a 
straight line on the plots. The greater the slope of the line, the smaller the value of B 
and the higher the decay rate of the centreline velocity. The distance between the origin 
and the x-intercept of the straight line representing the velocity decay is the virtual 
origin of the jet, xu. Note that George (1989) and List (1979) have suggested using 
scales defined from the rate of mass and momentum addition at the source, m, and M,, 
respectively, i.e. 

D ,  = m,/(M,)~ (3.4) 

and U ,  = M,/m,. (3.5) 

u, = U", (3.6) 

For a top-hat exit velocity profile (which corresponds closely to this experiment), 

D, = ~ D / ( T c ) ~ ,  (3.7) 
so that the conversion is straightforward. 

The SHW centreline mean velocity measurements of this experiment exhibit a decay 
constant of B N 6.7 or B, 2: 5.9 and a virtual origin of x,, N 2.7. These values are the 
same as those measured by Peng ( I  985) from 30 to 50 diameters in this same facility 
using single-wire probes and Pitot tubes. There is no evidence that these values vary 
with distance downstream. These results can be contrasted with those of Wygnanski & 
Fiedler (1969) for which two different virtual origins and decay rates were used: one 
for .x/D < 50 (x, 'v 3 0  and B N 6.4 or B, N 5.7) and the other x / D  > 50 (x, 11 7 0  and 
B N 5.6 or B,, 1: 5.0). Although Wygnanski & Fiedler were unable to identify a 
consistent centreline decay rate between 20 and 100 diameters, they did note that mean 
velocity profiles collapsed over this range. They concluded that, 'The rate of growth of 
the jet is sensitive to conditions of self-preservation, while the shape of the normalized 
velocity profile is not'. The slower decay rate ( B  N 5.6) was assumed to be the correct 
one, since it was based on the data points farthest downstream and believed to have 
finally reached the state of self-preservation. Centreline velocity values in our facility 
do not exhibit this difficulty, and are similar in value to the decay rate and virtual origin 
indicated by the measurements of Wygnanski & Fiedler taken at distances less than 50 
diameters downstream from the exit. The centreline velocity measurements of Rodi 
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FIGURE 6. Centreline velocity variation with distance from jet, CTA data. 
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FIGURE 7. Centreline velocity variation with distance from jet, LDA data. 
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(1975~) using hot wires also display a constant decay rate of B N 6.7 or B,  1: 5.9, 
agreeing with the values of this experiment. 

Figure 7 also shows the centreline decay of the same jet in the smaller enclosure as 
measured with the LDA by Capp (1983). Like the Wygnanski & Fiedler experiment, 
the centreline mean velocity decay rate of these measurements also fails to stabilize to 
a constant value. The data break away from the initial line to form a steeper line with 
a faster decay rate, but at greater distance from the exit than in the Wygnanski & 
Fiedler data. Thus the virtual origin and the decay rate are dependent upon the data 
points included in the calculations. The difference between our two experiments can 
clearly be attributed to the enclosure, the reasons for which will be discussed below. 
Using only the points within a 100 diameters of the exit, the virtual origin is xo N 4 0  
and the decay rate is B N 6.5 or B, N 5.8. The slightly lower values of B and B, 
observed by the LDA and the slightly higher value of xo are consistent with the small 
but non-negligible effect of the leading cross-flow error terms on the hot wire which can 
be estimated from table 2 as several per cent. The value of x,, = 4 0  will be used for all 
profiles hereafter. 

The mean axial velocity normalized by the centreline velocity, U/U, ,  is plotted 
versus the non-dimensional radial coordinate, 7 = r / (x -x , , ) ,  in figure 8. To avoid 
clutter, the data of Wygnanski & Fiedler has been plotted only as a smooth curve. The 
mean profiles of the current facility collapse after 30 diameters, but the SHW profile, 
7; 2: 0.102 is wider than the FHW or the LDA profiles for which 7; N 0.094. This is the 
expected behaviour, since a binomial expansion of the hot-wire error due to cross-flow 
effects reveals the leading-error term to be always positive (Beuther et a!. 1987). 
Surprisingly, the hot-wire data of Wygnanski & Fiedler, with a half-width of r/+ N 



Velocity measurements in a turbulent jet 45 

0.086, falls under all the LDA/FHW and SHW data of the current experiment. The 
reasons for this will also be discussed below, and be secn to be related to the centreline 
velocity decay rate discussed above. 

3.2. The momentum integral equation : a first-order eualuation 
An important test of any experimental data is whether it satisfies the equations believed 
to govern the flow (see George 1990). One of the most important tests of whether the 
flow being measured is, in fact, a reasonable model of an axisymmetric jet in an infinite 
environment is whether the velocity moment profiles satisfy the momentum integral 
given to second order by 

Note that this is not the momentum flux since it includes the contribution from the 
streamwise pressure gradient which has been eliminated using the radial momentum 
equation. Appendix A provides a complete derivation of (3.8). 

For a first-order analysis, the integrated momentum balance can be discussed in 
terms of the contribution due to the mean velocity as fitted by a Gaussian profile which 
passes through the jet half-width, i.e. 

(3.9) 

where A = -1n(0.5) = 0.693. 

to the momentum integral of (3.8) and ignoring the second-order terms yields 
Substituting this form into the expression for the contribution of the mean velocity 

(3.10) 

The momentum balance is then only a function of the centreline decay constant, B, and 
the half-width, yt. Using values of 7; and B from the current investigation, the first- 
order contribution to the momentum integral is 106% and 85% of the source 
momentum for the SHW and LDA/FHW data respectively. This can be compared to 
the value of only 69 ‘30 obtained from the Wygnanski-Fiedler data (based on their half- 
width of 0.086 and the early centreline decay constant B N 6.4). Thus, a significant 
portion of the source momentum in their experiment is missing. The situation worsens 
as one moves downstream since the increase in the slope of the curve describing 
Wygnanski & Fiedler’s data for x/d > 50 results in a decrease of B to 5.6 so that only 
53 YO of the momentum is accounted for by the mean flow. Because the momentum flux 
as expressed by (3.10) is proportional to B2 (recall the profile is self-similar so that y~ 
does not change), a decrease in the centreline decay rate produces a significant decreasi 
in the momentum accounted for by the mean profile. It is clear that such a drastic shift 
in the flow momentum is unlikely, nor can it be accounted for by considering the 
second-order terms (as shown below). 

Why then do the values obtained in the experiments reported here differ so markedly 
from those of Wygnanski & Fiedler? The answer is to be found in the experimental 
facilities and not in the measurement techniques and calibration methods. The 
similarity between the changing slope of the centreline decay in their facility and the 
earlier data of Capp (1983) measured in an air-tight enclosure is striking. For the case 
of Capp’s data it is obvious the flow is not an ideal jet (that is, a jet in an infinite 

3 FI M 258 
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environment), but is instead a confined jet in a finite environment. For such flows, 
conservation of mass demands that a return flow be set up around the outer edges of 
the facility. Since the mass flux of the jet is increasing with downstream position, the 
return flow must also increase in magnitude with downstream position. The 
deceleration of the return flow is accomplished by a favourable pressure gradient 
(dP,/dx > 0), so that P, is not constant but is a function of axial position and 
increases with increasing x. It must be remembered that even though the magnitudes 
of U ,  and dP,/dx are small, their effects on the momentum balance when integrated 
over a large area are significant. Because of this integration, it cannot be concluded that 
if the magnitude of the return flow, U,, is much smaller than the centreline velocity, 
U,, that the flow is guaranteed to behave as a jet in an infinite environment. Additional 
discussion of this phenomenon can be found in Capp (1983) and in Appendix B (see 
also George 1990). 

As is clear from Appendix B, the effect of the return flow is to steal momentum from 
the jet so that the experiment no longer simulates a jet in a free environment, but rather 
one in a box.? Even though the facilities of Wygnanski & Fiedler were surrounded by 
a wire enclosure, the behaviour pattern of the centreline decay rate indicates that the 
jet's behaviour was strongly influenced by backflow. The success of the measurements 
of the current experiment in conserving momentum can thus be attributed to the 
increased size of the facility. Now that both the error in these earlier data and its source 
have been identified, the remainder of this paper will focus on the results and the 
validation of the data from the current investigation. 

3.3. The jet  entrainment 
The mass per unit length entrained by flow, pE, can be obtained by integrating the 
continuity equation with the result that 

Using the curve-fit for the mean velocity (LDA) from table 4 yields the value of the 
integral to be about 0.14. Note that the curve is well-behaved, even for values of 7 > 
0.2; moreover the integral has obtained more than 90% of its value by 71 = 0.2. 
Therefore considerable confidence can be placed in this estimate. 

Morton, Taylor & Turner (1956) define an entrainment coefficient by 

E' 
2b W' 

a=- 

where E',  6 ,  and W are the equivalent top-hat parameters defined by 

b 2 W =  2 Urdr, 

b2W2 = 2J: U'rdr,  

1: 
E' = dx d(21:  Urdr). 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

-f Similar considerations have long been known to the ventilation community (Baturin 1972). The 
authors are grateful to Professor T. Malmstrom KTH, Stockholm for making us aware of this 
literature. 
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FIGURE 9. Axial component of turbulence kinetic energy, .'/U,'. 

It is easy to show that for the self-preserving jet, 

b = I ,  x/(12)i ,  

w = (4/Q B(M$/x,  

E, = I,  B(M,);, 

where 

(3.16) 
(3.17) 
(3.18) 

(3.19) 

(3.20) 

It ~OIIOWS that a: = 4/2(Z2)k (3.21) 

For the LDA/FHW data of the present experiment, Il z 0.014 and I, N 0.0066 so 
that a N 0.081. This is in striking agreement with the value of 0.08 obtained by Ricou 
& Spalding (1961) by direct measurement, and adds to the credibility of both 
experiments. For the SHW mean velocity profile, on the other hand, Il % 0.015 and 
I ,  N 0.0077 corresponding to aHw = 0.097. This is considerably higher than earlier 
estimates based on hot-wire measurements, and a consequence of the somewhat 
broader profiles resulting from the rectification and cross-flow errors on the wire. Note 
that the lower values from earlier experiment must be regarded as unreliable because 
the flows were not really reasonable models of jets in an infinite environment. Also it 
should be remarked that in view of the new understanding of self-preservation (George 
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FIGURE 10. Radial component of turbulence kinetic energy, t;"/U;. 

1989, and Appendix C) there is no reason to regard these spreading and entrainment 
rates as universally characterizing all jets. Rather they should be expected to vary (at 
least weakly) with exit conditions and Reynolds number. 

3.4. The second moments of uelocitj 

The Reynolds stresses in u2, v2, w 2  and m, arc plotted in figures 9-12, respectively. In 
all plots, the Reynolds stresses are non-dimensionalized by the square of the centreline 
velocity as seen by the respective measuring hardware. The LDA/FHW measurements 
were normalized by a centreline _ -  velocity of 4.82 m/s. The normalized centreline values 
for the normal stresses u', v' and 2 measured by the LDA are 0.076, 0.047 and 0.049, 
respectively. Note that the axisymmetry of the flow requires that 3 and w" be equal, 
- a condition nearly satisfied by the data. The SHW measured a centreline value for 
u z / / ~  of 0.078, only 4 %  higher than the LDA. If, however, we recall that the SHW 
has also overestimated U,, the actual error in the direct measurement of u" is closer to 
7.5 YO. Unless specifically noted, all data comparisons in the following discussion are 
between values of the normalized data, so that a comparison of the raw data values 
would exhibit an even greater disagreement. The normalized SHW centreline values for 
the radial and azimuthal normal stresses have nearly the same value of (0.005 us. 0.058) 
and significantly overshoot the LDA values. Inexplicably, so do the FHW data, but 
only near the axis. Elsewhere, and for all other moments the FHW and LDA data are 
in virtual agreement. 

The profile of the axial normal stress measured with the SHW fails to detect the 
distinct off-axis peak detected by the LDA/FHW. This peak is consistent with model 
calculations arid is due to the strong off-axis peak in the production of turbulence 

- ~ -  
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FIGURE 13. Turbulence shear stress calculated from (3.22) using SHW data. 

energy by the Reynolds stress working against the mean shear. This peak in u" occurs 
at a value of q 'v 0.04. The largest discrepancies occur off-axis at higher turbulence 
intensities. Here the SHW profiles decrease much more rapidly with radius and pass 
under the LDA/FHW curves. At a value of 9 N 0.1 (near the jet half-width) the local 
turbulence intensity, u'/ U, is approximately 55 'YO and the normalized SHW values are 
roughly 25 % less than those measured by the LDA/FHW. For all the normal stresses 
the relative error continues to grow with increasing radial coordinate. The disagreement 
between the SHW and LDA profiles is much more pronounced in the second-order 
moments than in the mean velocity profile, but the latter are virtually identical to the 
FHW data. 

The differences between SHW and LDA/FHW second moment data are consistent 
with the equations in table 2 for the cross-flow errors (except for the discrepancy near 
the axis). For the second-order moments, these depend on the third-order moments, 
and are therefore only one level higher than the measured quantity. Thus the SHW 
second moments are subject to greater contamination than the estimates for the mean 
values. It might be tempting to try to use the expansions of table 2 to correct the 
second-order measurements ; however, even though one might model the higher-order 
even terms using a Gaussian approximation (e.g. Tutu & Chevray 1975), no convenient 
approximation is apparent for the third-order moments. Also, flow reversal and prong 
interference errors are not accounted for in these analyses and the higher-order terms 
have been observed to drop off very slowly. As a consequence, it is not generally 
possible to correct the hot-wire measurements. 

The consistency of the data of the current experiment can be evaluated by 
substituting the first and second moments into the differential equations of motion for 
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FIGURE 14. Turbulence shear stress calculated from (3.22) using LDA data. 

a free jet. By using the radial momentum equation to eliminate the pressure, neglecting 
terms above second order and integrating with respect to radius, the streamwise 
momentum equation can be solved for the Reynolds stress to yield (Appendix A, 
equation (A 3)), 

(3.22) 

If the data is consistent with the differential equations of motion, the Reynolds stress 
should be successfully predicted by the measured values of the terms on the right-hand 
side. The results of this integration are shown in figures 13 and 14. Each plot consists 
of the measured data points, a dashed line for a simplified prediction of ia based on 
the mean velocity alone (first term on the right-hand side of the above equation) and 
a solid line calculated using the full form of (3.22). 

The SHW results are documented in figure 13. For the simplified estimate, the peak 
value of the Reynolds stress is overestimated while towards the outer edge (7 > 0.15) 
it is too low. When the second-order terms are inserted, the predicted value of im 
increases everywhere across the jet. The prediction near the peak value becomes worse 
while the accuracy at the outer edges is not significantly improved. Evidently, the SHW 
data does not satisfy the equations of motion nor should it be expected to do so because 
of the cross-flow and rectification errors. 

The LDA/FHW data of figure 14 exhibits the expected behaviour. Here, unlike the 
SHW data, the first-order prediction underestimates the Reynolds stress, while the 
correction due to the second-order terms brings the predicted values up to the 
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Total 

LDA 0.87 0.24 0.13 0.15 0.97 
SHW 0.99 0.14 0.07 0.05 1.07 

TABLE 3. Momentum integral results, equation (3.8) 

- - - 
U 2  U 2  L' ' W' (equation (3.9)) 

Probe 
type 
L 
HW 
L 
HW 
L 
HW 
L 
HW 
L 
HW 
L 
HW 
L 
HW 

co 
1.000 
1 .oo 
7.648 x 
7.778 x lo-? 
4.723 x 
5.457 x 
4.900 x lo-' 
5.78 x 
2.139 x 
2 . 1 4 ~  10-3 

- 1.252 x 10-3 
2.20 x 10-3 

- 1 . 2 2 0 ~  10-3 
2.85 x 10-3 

CZ 
1.212 x 10' 

1.729 x 10' 
2.79 x 10' 
2.222 
0.355 
2.316 

2.398 
1.008 
8.746 x lo-' 
1.237 

1.04 x 10' 

- 1.925 

-1.71 

- 1.645 x lo-' 

c4 
2.815 x lo3 

~ 

-4.845 x lo2 
-2.02 x 103 

5.174 x 10-1 

5.745 x lo-' 
2.73 x 10-1 

-4.298 x 10' 

-1.551 
-4.763 x 10' 
- 7.08 x lo-' 
- 5.888 x 10, 

2.558 x 10' 
-9.20 x 10' 

c, 
- 

- 

5.864 x 104 
4.30 x 10" 
- 

- 

~ 

__ 

1.889 x lo3 
5.54 x lo2 
8.995 x 10' 
7.81 x 10' 
4.238 
1.98 x 104 

TABLE 4. Curve fits for even functions, p ( 7 )  = [C, + C, 7, + . . .] e-ATz 

A 

111 
63 

156 
257 

79 
89 
73 
42 

134 
75 

13.5 
95 

262 
6.5 

Probe 
type 
L 
HW 

vu2 L 
HW 

U S  L 
HW 

V W 2  L 
HW 

- 
Uc' 

- 

- 

- 

Cl 
5.500 x 10-1 
4.375 x 10-l 

-3.870 x lo-' 
3.33 x 
4.870 x lo-' 
1.2 x lo-' 

3.0 x 
- 

c3 

-2.962 x 10, 
-3.931 x 10' 

2.647 x 10' 
1.59 x 10' 
3.518 x lo-' 
7.27 x 10-1 
- 

5.17 

c, 
1.282 x lo3 
1.55 x lo2 

-7.988 x 10' 
-2.87 x 10' 

6.771 
2.09 x 10' 
- 

-4.83 x 10' 
TABLE 5. Curve fits for odd functions, p(v> = [C, 7 + C, v3 + 

c, A 

- 1.898 x lo4 78 
1 . 3 4 2 ~  lo4 90 
5.340 x lo4 195 

169 

246 

7.587 x lo3 100 

- 

-6.250 x lo2 65 
- 

- - 

. ..I e-*V2 

measured profile. Based on these results, it can be concluded that all of the first and 
second moments measured by the LDA (that is U, u2, v2, w 2  and m) are compatible with 
the equations of motion. Similar conclusions can be drawn for the FHW data. 

The final verification of the data is evidenced by the full momentum balance of (3.8). 
This balance is calculated using the fitted equations with form described by (2.6) and 
coefficients as listed in tables 4 and 5.  The integral results are summarized in table 3. 
The first four columns of table 3 list the contribution from each individual term, while 
the last column lists the sum total. Because the simple Gaussian form of (3.9) 

- _ _  
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FIGURE 15. Axial flux of u2, u3. 

underestimates the mean profile at the outer edges, the contribution of the mean 
velocity to the momentum flux is larger than the values presented in 93.2. The mean 
velocity accounts for the majority of the momentum flux: 99 YO for the SHW data and 
92 YO for the LDA/FHW data. The contribution of the axial component of turbulent 
kinetic energy, u", accounts for an additional 14%/24% in the SHW/LDA balance. 
The reason for the large difference can be seen easily from figure 9 where the 
significantly larger off-axis values of u" are magnified by the multiplication by radius 
in the integrand. Note that the profiles of radial and azimuthal turbulent kinetic 
energy, 3 and 2, are nearly equal within each set of measurements so that the 
contribution due to each term is roughly the same in their respective balances (half of 
7 Y /  13 YO and 5 YO/ 15 YO). Their net contribution is to remove approximately half of 
the momentum contributed by 2. The final totals reveal that the SHW data, as 
expected, significantly overestimate the momentum flux by 7 YO, while the LDA data 
is 3 YO too low. That the LDA and FHW momentum flux can be conserved with this 
accuracy must be regarded as gratifying and lends considerable credibility to the 
experiment, especially considering the scatter within the LDA/FHW data, the possible 
effect of the small return flow present even with the large enclosure, and the difficulty 
in integration at the outer edge of the jet (where both the area and the errors in the 
averaging process become large). 

3.5. The third-order velocity moments 
The major significance of the third-order moments is due to their appearance as 
transport terms in the mean kinetic energy budget of the turbulent velocity fluctuations. 
Since it is the gradients of these terms which appear in that energy balance, differences 



54 H. J .  Hussein, S.  P. Capp and W. K. George 
- 

/ \ 
, -  

/ 
\ 

0 SHW data 

LDA data 

o /  A FHW data 

SHW curve tit 

__ LDA curve fit 

_ - _  
0' 

00 ' 

A b \" 

0.0040 

0 0.05 0.10 0.15 0.20 0.25 
r/(x-xo) 

_ _  
FIGURE 16. Axial flux of v2, uv2. 

in the slope between the SHW and LDA/FHW results are very important. 
Unfortunately, it is in the third moments of the velocity field that the largest differences 
are observed. 

The terms for the axial transport of turbulent kinetic energy are plotted in figures 
15-1 7. These figures reveal significant differences in shape, slope and magnitude 
between the SHW and LDAjFHW axials. All curve fits for these third-order terms are 
expressed in terms of even powers, ensuring a zero slope at the jet centreline. The 
functional fit to these profiles are presented in tables 4 and 5. Peak values for these fits 
along with their locations are presented in this discussion. For both clarity and brevity 
of presentation, results of the LDA/FHW investigation will be denoted using the 
subscript L, while the SHW results will be identified using the subscript HW. Since the 
FHW and LDA results are virtually identical, no distinction is made between them 
in the discussion. 

The transport of axial kinetic energy, 2, is presented in figure 15. Away from the 
centre, the LDA/FHW profile is higher than the SHW profile at all points across the 
profile, as evidenced by the centreline values of 0.002 14, and 0.002 14,, and peak 
values of 0.00749, and 0.00420,,. Not that the peak values of both measured profiles 
occur at the same approximate position, 0.084, and 0.078,,. Because the peak value 
of the LDA/FHW data is much higher than that of the SHW, the gradient of the 
former near the origin (0.02 < 7 < 0.06) is approximately twice that of the latter. 

The axial transport of the radial component of turbulent kinetic energy, zdv2, is 
presented in figure 16. The SHW fails to detect negative values near the origin as 
reflected in the centreline values of -0.001 25, versus +0.00220,,. The LDA/FHW 
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profile crosses the axis at 7 = 0.037, and increases to a peak value of 0.002 16, versus 
0.00436,,. Consequently, the SHW data is significantly higher than the LDA/FHW, 
except at the outer edges of the jet (7 > 0.16). The peak value for the LDA/FHW 
profile is farther out, at a radial coordinate of 0.10, contrasted to 0.073,,. Although 
gradients near the origin for both sets of data are roughly the same, the differences in 
the radial location and the magnitude of the maximum value of the profiles results in 
differences in values of the radial gradients for locations where 7 > 0.08. 

The remaining axial transport term of azimuthal turbulent kinetic energy, 2, is 
graphed in figure 17, and is very similar in behaviour to figure 16. As before, the SHW 
fails to measure negative values near the origin, while the LDA/FHW does not become 
positive until 7 = 0.043. The centreline values of -0.00125, and +0.0029,, along 
with the peak values of 0.001 23, and 0.0024,, at 0.097L and 0.070,,, are roughly the 
same as those presented in the preceding paragraph for 3. The pattern for the slopes 
of the profiles is also repeated. 

A comparison between the profiles for the axial transport terms indicates that ux is 
much higher than the other axial transport _ _  terms. The _ _ _  ratio of the peak values for the 
LDA/FHW data are 3.5: 1 and 6: 1 for u3:uzj2 and u3:uw2,  respectively. The peak 
values for all three profiles occur at the same approximate radial location of 7 z 
0.09 f O . O 1 .  

Owing to the limitations of the LDA optical configuration, only two of the three 
radial transport terms, 2)u2 and 2, were measured using both SHW and LDA. The third 
term 2, was measured using only the SHW. Fitted curves for the radial transport 
terms are determined using odd powers for the polynomials with zero centreline values. 
These data are plotted in figures 18-19. Although the plots do not show the large 
disagreement evidenced in the axial transport terms, the differences are still significant. 

The radial transport of axial kinetic energy, 2, is pictured in figure 18. The 
LDA/FHW profile exhibits a relative minimum (vu” = -0.000523 at 7 = 0.02l)Just to 
the right of the origin. The SHW fails to detect these small negative values. The 
LDA/FHW values remain below those of the SHW, although the slopes for both 
curves are approximately equal for 0.02 < r/ < 0.08. The peak value of the LDA/FHW 
curve (0.00283, and 0.003 35,,) occurs at a slightly greater radial coordinate than the 
SHW (0.096, versus 0.082,,). The SHW profile passes beneath the LDA/FHW at 
7 = 0.108, shortly after reaching its peak, and then decays at a faster rate. 

Figure 19 shows the results for the transport of radial kinetic energy, 3. Note that 
no negative values are found for either curve. The SHW data initially has a steeper 
slope, and again peaks at a higher value of 0.0037,,. The LDA/FHW maximum of 
0.00275, is once more found at a larger value of 7.0.093, as opposed to 0.059,,. The 
SHW profile is narrower, with a steeper gradient _ _ _  at the outer edge (7 > 0.06). 

Figure 20 shows the radial transport of w2, uw’, as measured by the SHW alone. In 
addition to the problems with rectification and cross-flow, this measurement is also 
complicated by the need to use two cross-wires in close proximity. The loss of 
correlation because of the spacing between the probes is believed to be minimal; 
however, the additional effects due to prong wakes cannot be estimated. In view of the 
problems with the SHW results for the other third moments and the absence of LDA 
results, little confidence should be placed in these results, especially away from the axis. 
Thus, the failure to obtain this moment with the LDA or FHW represents a major 
shortcoming of this experiment. In the energy balance which follows it will be assessed 
that 3 = 3 in the absence of better information. 

In summary, the most striking difference between the SHW and LDA/FHW third 
moment results is the appearance of the sign reversals near the axis in the latter. These 
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negative regions are consistent with the physics and with most second-order models, 
and indicate a flux of energy toward the axis and away from the regions of peak 
production which are of€-axis. Their absence in the SHW measurements can be 
explained by reference to table 2 which shows that the leading cross-flow error terms 
for the third moments are proportional to the fourth-order moments. Thus, when the 
third moments are themselves small (e.g. near the axis) the largest contributors to the 
measured moments are the error terms which are positive. No such simple explanation 
is possible for the large differences between the SHW and LDA/FHW results away 
from the core region of the jet since the expansions leading to the equations in table 
2 are no longer valid because of the high turbulence intensity. In view of the nature of 
the error terms and the increasing importance of the higher-order terms with distance 
from the axis, it would have been surprising if the results were in closer agreement. 

4. Inferences from the data 

4.1. Energy balance and dissipation 
If the pressure-velocity correlations and dissipation were known it would be possible 
to check whether or not the data satisfy the turbulence kinetic energy equation given 
for this flow by 

The term ehom is defined by 
= v(aui/axj)2, 

which reduces to the actual dissipation, t' = 2 v q  for locally homogeneous flow (see 
George & Hussein 1991). It is convenient to define a 'transport dissipation' which 
includes both the homogeneous dissipation and the two pressure-velocity terms, i.e. 

In the present experiment, p / p  and p u / p  could not be measured directly. Also, the 
moment uw" was not measured by either the LDA or the FHW, and the SHW results 
are not deemed to be reliable because of _ _ -  the high turbulence intensity. In the balances 
computed below, it was assumed that ow2 = v3. While certainly less satisfactory than 
direct measurement, the errors introduced by this assumption have been estimated at 
less than 10 % by computing the balance with the 3 term identically zero. 

George & Hussein (199 1) report several dissipation estimates based on direct 
measurements of velocity derivatives using the flying hot wires in the same facility 
under identical operating conditions. Curve fits to these data are provided in table 4. 
These are shown in figure 21 (a), along with the transport dissipation calculated using 
(4.1) and (4.3). Two of the curves shown are based on the assumption of local isotropy 
using 
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co c2 c, C, A 

fi,,,(aula.4 0.2886 11.99 - 1635 43 470 136 
%,,(~UlaYY) 0.2335 49.52 3878 151 200 I65 
E m  0.3549 11.99 - 1635 43 470 20 1 

0.07655 11.80 -991.3 34 350 151 
0.1374 11.58 3012 459.0 21 5 

€11 
€1 

TABLE 6. Curve fits for dissipation (from data of GeorFe & Hussein 1991) 
p ( r )  = [C; + C, T~ + C, y4 + C, $7 e-4v 

where the y-direction is any axis perpendicular to x. These differ considerably from both 
each other and the locally axisymmetric estimate defined by 

where the local axis of symmetry has been chosen as the streamwise direction, x. The 
locally axisymmetric estimate is believed to best represent the actual dissipation in the 
jet. In spite of the suggestion by George & Hussein (1991) that these results need to be 
substantiated by further measurement, they certainly constitute the most extensive 
measurements of dissipation to date in a jet, and the only ones which attempt to deal 
with its apparent anisotropy. Therefore, the locally axisymmetric estimate will be 
used below to determine the kinetic energy and component balances, and the 
pressure-velocity and pressure-strain rate correlations. For the latter purpose, the 
component dissipations, e,, and el, from the locally axisymmetric estimate will be used 
where e = 2t, + tll. Note that curve fits for ell and are included in table 6, and are 
shown in figure 21 (b). 

Figure 22 shows a plot of the kinetic energy balance in similarity variables. Only the 
net contribution to the mean convection and turbulent diffusion terms have been 
plotted. The pressure-diffusion has been obtained as the closing balance, and the 
viscous diffusion term is negligible because of the high-turbulence Reynolds number. 
It is apparent from the figure that away from the core region the balance is primarily 
between production and dissipation, a characteristic of homogeneous and plane shear 
flows (see Tennekes & Lumley 1972). Near the axis though, the production is small 
and the remaining terms balance the dissipation. 

4.2. The pressure-velocity correlation 
The difference between the transport dissipation and the directly measured dissipation 
can be inferred to be primarily the contribution of the missing pressure-velocity 
moment. If it is assumed that the streamwise gradient of p / p  can be ignored relative 
to the radial gradient of pulp, the latter can be estimated by integrating caZi-etr; i.e. 

Figure 23 shows the profiles of 2 p / p  calculated using the dissipation curves from 
figure 21 (a). Also show for comparison is the profile of -8. The difference between 
the locally isotropic and locally axisymmetric estimates is striking, with only the latter 
having the required decrease toward zero at large radius. Also, at least away from the 
core region, the profile based on the locally axisymmetric dissipation estimate has the 
same shape as 6, as suggested by Lumley (1978), and the coefficient is even close to 
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his suggested value of g. While these results can hardly be regarded as definitive in view 
of the uncertainty in the dissipation measurements, they would seem to give increased 
confidence in the locally axisymmetric dissipation estimate. The differences near the 
core region may be a consequence of a dissipation estimate which is too high, or the 
non-negligibility of the pa contribution there. Alternatively, they may represent mean 
gradient contributions to pressure-velocity correlation terms previously ignored, but 
which have been included in the pressure-strain rate models (Lumley 1978), and in 
calculations of the pressure itself (George, Beuther & Arndt 1984). 

4.3. The component energy and Reynolds stress balances 

The component kinetic energy and Reynolds stress equations for the jet are given by 

u2 balance 
- 

- 
u2 balance 

- 
w2 balance 
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iiii balance 

These can be identified as the mean convection, turbulence transport, work done by 
pressure gradient, turbulence production, and component dissipation respectively. 
(Note that the customary decomposition of the pressure-work term into pressure 
diffusion and pressurestrain rate has been deferred to the next section since only the 
pressure-work can be obtained without assumptions). The viscous diffusion terms are 
not included since they are negligible for this flow, For locally axisymmetric turbulence 
with the preferred axis in the x-direction, E,, = E , ,  and err = eOH = el, while exr = 0. 

Figures 24-27 show the balances for (4.7)<4.10). The pressure-work term has been 
obtained as the closing balance. Particularly interesting is the role of this term which 
is to remove energy from the u" component equation (where energy is primarily 
produced from the mean flow), and to redistribute it to the other two components. This 
is most striking for the 3 component equation where there is negligible production 
and the balance is almost entirely between the energy transferred by the pressure 
gradient term, and the dissipation. 

4.4. The pressure-strain rate terms 
It is customary (see Tennekes & Lumley 1972) to separate the pressure-gradient terms 
into pressurdiffusion and pressurestrain rate terms. For the axisymmetric jet the 
appropriate decompositions are 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

The last term on the right-hand side in each equation is the pressure-strain rate term, 
while the remainder represent the pressurediffusion. Note that the sum of equations 
(4.11)-(4.13) yields the pressure-diffusion term of the kinetic energy equation since the 
pressurestrain rate terms add to zero by continuity. 

Figure 28 shows the four pressure-strain rate terms calculated from (4.1 1)-(4.14)' 
and makes clear their role in redistributing the turbulence kinetic energy. These have 
been obtained bv assuming that 
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in equation (4.14). The terms involving pu utilized the results of $4.2. Note that 
i3pT/ai? = 0 because of the axial symmetry of the jet. 

5. Summary and conclusions 
Measurements of the turbulent velocity field of an axisymmetric jet using burst- 

mode laser Doppler anemometer (LDA) and stationary and flying hot-wire (SHW and 
FHW respectively) techniques have been reported for all moments up to the third 
order. The LDA and FHW results differ substantially from the SHW results, especially 
away from the centre of the jet where the local turbulence intensity is a minimum. The 
observed differences are consistent with the well-known hot-wire errors in high- 
intensity turbulent flows, in particular, cross-flow, rectification and drop-out. 

Particular care was taken to check whether or not the equations of motion for a free 
axisymmetric jet were satisfied. The LDA and FHW results were shown to satisfy both 
the second-order differential and integral forms of the momentum equation for a free 
jet to within the experimental accuracy of the measurements and integration. The SHW 
results of this investigation, on the other hand showed substantial deviations which 
were consistent with the hot-wire errors. A similar analysis of the SHW results of other 
investigators showed deviations which suggest that the flows being measured were 
strongly influenced by the presence of the return flow in the facility as well as by 
experimental errors arising from the high turbulence intensity. 

Subsequent to the work reported herein, but already published (George & Hussein 
1991), flying hot-wire experiments were conducted in the same jet for the purpose of 
directly measuring the dissipation. Those measurements showed the dissipation to be 
locally axisymmetric. The dissipation estimates, from the flying wire experiments were 
utilized here to obtain a satisfactory turbulence energy balance and to provide some 
insight into the missing pressure-velocity and pressurestrain rate correlations. The 
estimates of the pressure-velocity correlation based on a locally isotropic dissipation 
were physically unrealistic, but the locally axisymmetric dissipation gave reasonable 
behaviour at large radius, thus lending additional support to the local axisymmetry 
hypothesis. The energy and Reynolds stress balances clearly show that the balances in 
the core region were dominated by the mean convection and secondary terms. This is 
in contrast to the flow away from the core in which, like homogeneous shear flows, the 
primary balance was among the production, pressure-strain rate, and dissipation 
terms. 

Almost concurrent with the experiments described here has been a somewhat parallel 
effort by Panchapakesan & Lumley (Panchapakesan 1990; Panchapakesan & Lumley 
1993) at Cornell University. Their jet results are in good agreement with those reported 
here, but with several slight but important differences. In particular, the off-axis peaks 
in the normalized Reynolds stress and cross-moments were slightly lower (5-10 YO) and 
there were substantial differences (3&50 YO) at large radius (7 > 0.12) in many of the 
moments. The former can be understood using the analysis of Appendix C where it is 
argued that the cross-moments should scale with U,3 dd/dx instead of U,3. Also d8/dx 
should decrease toward an infinite Reynolds number limit as the source Reynolds 
number increases. The source Reynolds number in the Panchapakesan/Lumley 
experiment was an order of magnitude lower than in the experiments reported here 
(1.1 x 10' us. lo5), and the observed spreading rate was slightly larger (0.96 us. 0.94). 
Thus both of these results may well be correct, the difference resulting from the 
different Reynolds numbers of the experiment. The effect on the measured moments, 
however, would be opposite to that observed, therefore an explanation must be sought 
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elsewhere. The discrepancies can probably be attributed to the relatively high effective 
turbulence intensity in the Panchapakesan/Lumley experiment than here (about 20 %). 
This is because their probe velocity was approximately equal to the velocity of the 
mean flow at the centreline (at x/D = 60), whereas here it was about twice. From the 
expansions of table 2, it is clear that the higher moments will be most sensitive to the 
effective turbulence intensity and especially at large radius. Therefore the profiles 
presented here perhaps have the better claim, especially since the LDA and FHW 
agree. On the other hand, the differences may simply reflect the different boundary and 
initial conditions. 

In conclusion, the results of the prcsent experiment (and those of Panchapakesan & 
Lumley as well) make it clear that previous axisymmetric jet studies leave much to be 
desired, and probably should not be trusted - both because of the techniques employed 
and the facilities utilized. There remain, however, some important questions to be 
explored; including the full implications of the similarity analysis of Appendix C, the 
exact nature of the dissipation and its relation to local axisymmetry and similarity 
theory, and the Reynolds-number dependence of this flow. 
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Appendix A. Justification of equation (3.8) for the momentum integral 

the help of the continuity equation as 
The full averaged momentum equation for the axisymmetric jet can be written with 

a(u”2) 1 a I ap 
ax r ar P ax +--r(UV+uu) = ---+vv2u, 

- a(uv+m) 1 c? - 1 ap W 2  
+--rr(V2+u2) = - - - + v V ~ V + ~ .  

ax r ar P ar 
By integrating (A 2) with respect to r from r to infinity, and substituting its x-derivative 
into (A I), it follows that 

a 
ax 

a i a  
- ( U 2  + u2) +-- r( UF‘+m) = - UV+ a) dr’ +-( V 2  +?) ax r ar 

Note that V and the turbulence quantities have been assumed to go to zero as r +  co. 
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Equation (A 3) can be integrated across the entire jet to yield 

This can be integrated with respect to x from the source to location x to yielding 

(4 (4 
If the terms on the right-hand side of (A 5 )  can be shown to be negligible compared 

to M0/2n:, then (3.8) follows immediately. Each of the integrals on the right-hand side 
can be computed using the appropriate similarity forms and the empirical curve fits of 
table 4. The first integral is the largest, but is less than 0.02M0; the remainder are 
several orders of magnitude less. This approach, however, ignores a possible significant 
contribution from the last two terms near x = 0. Therefore the following order of 
magnitude analysis is useful. 

From the left-hand sidc of (A 5 )  (or equation (3.1)) it follows that 
M,, - U,ZD2 - U i  8'. 

Term (a) 
At location x, both UV and m can be shown to be of order U,Z S/L (the former from 

continuity, the latter from the necessity of retaining the Reynolds stress in the x- 
momentum equation) it follows that 

This is consistent with the boundary-layer approximation and the value of 0.02 
obtained by substitution of the measured profiles. At the exit plane (x = 0), if L, is 
a lengthscale characteristic of the streamwise development of the local shear layer and 
S,, is its thickness, then V - U, S,/L,, so that the mean velocity term then can be 
estimated as 

-[a(O)] 1 - -- 1 1  U ,  Uo-D2So 4 - (2)'. 
A4 M n  L n  LO 

Since the shear layer at the lip also develops slowly S,/L, < 1 and this term is also 
negligible. The turbulence contribution is identically zero if the boundary layer at the 
lip is laminar. If not, -m - u i ,  the friction velocity, which can be estimated from the 
boundary-layer equation as U, SOILo thus yielding the same order of magnitude as for 
the mean term. 
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Term (b) 
Since V - U,7 S/L it follows that 

Thus this term is an order of magnitude smaller than term (a), a fact confirmed by 
integration of the measured profiles. 

Term (c) 
There are two contributions to this term, one at the downstream location x, the other 

at the exit plane. At location x, which is presumed to be in the self-preserving region, 
the radial gradients of V scale with 6 so that 

which is typically 10P - 
At the exit plane, if the jet is presumed to exit from a nozzle into free space the 

primary contribution is from the very thin boundary layer coming off of the jet lip. 
Estimating this layer thickness by the boundary-layer thickness at the exit, 6,, yields 

where Lo is a scale characteristic of the streamwise gradient of U in the developing 
shear layer at the exit. Since SOIL, can be no larger than order one, for Uo = 55 m/s, 
6, - 1 mm in air, this term is less than 10-3-10-4. 

Term ( d )  

of the integrand at the origin. Using the same arguments as above, 
An upper bound for the contribution of this term can be estimated by using the value 

Using the values above with D - 0.025 m and L - 1 OOD gives a value of less than 1 O-3. 
It should be noted, however, that both terms (c) and (d) could be significantly 

increased by the presence of a wall through which the jet exits. This has been previously 
noted by Schneider (1 985) using matched asymptotic expansions. 

Appendix B. A model for the effect of confinement on momentum 
conservation 

It has been argued in $3.2 that the failure of earlier experiments to satisfy the 
momentum integral can be attributed to the effects of confinement on the jet. In 
particular, it was suggested that the presence of walls at a finite radius causes the 
entrainment to be fed by a reverse flow outside the jet (see figure 29). Since the 
contribution of this return flow to the momentum integral is positive (negative 
momentum going backwards), it is the sum of this momentum and that in the jet which 
is equal to Mo. Thus the return flow ‘steals momentum from the jet’, and thereby 
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t 

FIGURE 29. Schematic showing return flow in a confined jet, 

progressively modifies it from the jet which would be observed in an infinite 
environment. The purpose of this Appendix is to provide a model for this phenomenon, 
and an estimate as to how it relates to the jet and room parameters. 

To first order, the momentum integral at each cross-section of the room must be 
equal to the rate at which momentum is added at the source. Note that this ignores the 
second-order contributions due to turbulence and mean pressure variations, as well as 
viscous effects on the walls. Considering the flow to consist of two parts, a jet-like part 
and a return flow, yields the following momentum constraint: 

Since mass must also be conserved the return flow must balance the jet flow so that 

UdA. (B 2) 

If the return flow can be approximated as uniform across the cross-section, then 
l i e ,  UdA = SSJreturn 

(B 2) reduces to 
c c  

UdA = U, A,, J J i e t  
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where U,  is the return flow velocity at a given x-location and A ,  is the cross-sectional 
area of the room there. (Note that the area taken up by the jet-like part of the flow is 
ignored to this approximation.) Similarly, (B 1) can be approximated by 

The velocity profile in the jet-like part of the flow can be written in similarity-like 
variables using the local jet momentum integral as 

U = BM;x-tf(r/~), (B 5 )  

where M(x)= U 2 d A .  Let 
A convenient choice for the profilef(r/x) is the Gaussian one so that 

where as before v = T/X. 
.f(?l> = exp [-  Cv2l, (B 7) 

Note that (B 6 )  can be satisfied by this profile only if 

2xB2 
4 c  
-- - 1. 

Substitution of equations (B 5 )  and (B 7) into (B 3) yields thc x-dependent return 
flow velocity as 

Further substitution into equation (B 4) and use of equation (B 7) yields the 
momentum constraint as 

= [ I+ - -  16 (x)'A,]ll - , 
TGB' D A, M,  

where D is the jet exit diameter (A, = i7cD2). Thus to first order, the local momentum 
in the jet-like part of the flow is diminished as x/D increases. 

Equation (B 10) can be used to estimate the room size required to return a given level 
of momentum in the jet. For the experiment described here A, = 4.9 x m2 and 
A ,  = 23.9 m2 so that A,A, = 4.9 x From $3.1, B 1: 6.5 is an appropriate 
choice, so that the momentum ratio at x / D  = 70 is given by M / M ,  = 0.99. Thus the 
experiment reported here should closely resemble a jet in an infinite environment, at 
least by this criterion. 

Appendix C. Similarity analysis of the axisymmetric turbulent jet 
The traditional similarity analysis of jet assumes a priori that all jets will be 

asymptotically alike and characterized by the hypothetical point source jet (see Monin 
& Yaglom 1971; Townsend 1976). These ideas were recently challenged by George 
(1989) who argued that real jets, in fact, retained forever a dependence on the 
conditions at the source. This Appendix briefly summarizes those arguments and 
emphasizes points of particular interest here. 

Solutions are sought to the averaged momentum equation for which the velocity and 
Reynolds stress are represented by 
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where 7 = r /S(x) .  (C 3) 
It is important to note that it is never assumed that R, = U,Z, nor will it be found to 
be so. 

The x-momentum equation to first order is given by 

Substitution of (C 1)-(C 3) yields 

where ( 3 . Q  the integral momentum equation, has been used to deduce that U,Z - S1. 
It is clear that a similarity solution can exist only if the bracketed term is constant, i.e. 

Note that the constant of proportionality may depend on the source conditions, and 
that similarity of the velocity and Reynolds stress profiles requires neither a linear 
growth rate nor power law solutions. 

It is easy to see from (C 5 )  why the previous analysis with R, = U,: have been 
accepted. If the constant of proportionality from (C 6) is absorbed into the Reynolds 
stress function g12(y), then (C 5 )  will be the same for all jets, independent of source 
conditions or growth rate, d6/dx. Thus, if U / U ,  is plotted as a function of y / & ,  then 
all (properly measured) experiments should produce the same profile, regardfess of 
d8/dx and source conditions. Because d6/dx itself depends on the source conditions it 
would be wrong to assume from this that all jets are asymptotically similar. In fact, the 
Reynolds stress which when plotted as m / q  will vary from experiment to experiment 
(or in some non-jet flows, from station to station, cf. George 1989) because its own scale 
represented in these variables is U,Z d8;ldx. 

The x-dependence of 6 can be examined by considering (4.1) for the kinetic energy. 
The kinetic energy, radial transport, and dissipation can be represented by 

R, K lJkd8/dx. (C 6) 

- 

k2 = K,(x)k(r), (C 7) 
-p+@ = qx) t(q),  (C 8) 

6 = D,(x) e(7).  (C 9) 
Substitution of these into (4.1) (with the neglect of the streamwise transport terms) 
yields 

It follows immediately that the similarity solutions can exist only if all of the bracketed 
terms have the same x-dependence, i.e. 

It is straightforward to show that K, - Ui,  so that T, - U,”dS/dx and D, - 
(U,”/S)d&/dx. Thus all of the cross-moments of second and third order do not scale 
with the velocity alone, but rather its product (to the appropriate power) with the 
growth rate. Therefore, as with Reynolds stress, the moments normalized with U,  alone 
should be expected to vary from experiment to experiment. 
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The dissipation result of (C 11) can be used to show that the axisymmetric jet does 
indeed grow linearly, for all source conditions (unlike the plane jet, for example). At 
infinite Reynolds number the rate of dissipation is entirely governed by the rate of 
spectral energy transfer to the viscous scales so that E: - qi/l where I is the physical 
associated with the energy-containing eddies. For this flow I - S so that D ,  -v U:/,?, 
with the result that dS/dx = constant. Thus the infinite Reynolds number jet grows 
linearly, albeit at a rate still dependent on the source conditions (e.g. exit velocity 
profile). 

For very low Reynolds number (but still fully turbulent), the dissipation and energy- 
containing ranges overlap so that e - q 2 / P  (see Tennekes & Lumley 1972). It follows 
that D, - vU,'/S2 and that dS/dx - v /UsS .  Thus since U,S = const (from the 
momentum integral), the low-Reynolds-number jet also grows linearly, albeit at a rate 
inversely proportional to Reynolds number. 

While neither the low nor infinite Reynolds number limits is probably a very good 
description of laboratory jets, it is reasonable to expect a linear growth at a rate which 
is only asymptotically independent of source Reynolds number. Thus all measurements 
of growth rate and cross-moments will reflect the source Reynolds number at which the 
experiment is carried out. Most importantly, since the jet evolves at constant Reynolds 
number regardless of how it is generated (because of the momentum constraint), the 
collapse among experiments will not be improved by increasing distance downstream 
(at least for this flow). 
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